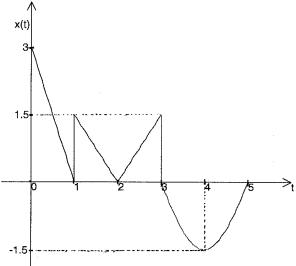
OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SCHOOL OF MECHANICAL AND AEROSPACE ENGINEERING

ECEN 4413/MAE 4053 Automatic Control Systems Spring 2012



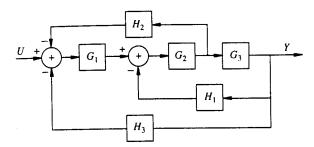
Midterm Exam #1

	e any four out of v which four liste	five problems. Ed below to be gra	ded:
	;;	;·	
If you do not specif	y which four, th	e worst four will	be chosen.
Name :			_
E-Mail Address:			

Problem 1:

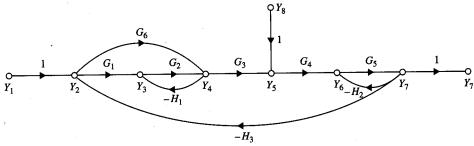
Describe the following signal, x(t), in terms of some basis functions (e.g., step, impulse, ramp or sinusoidal):

Problem 2:


A continuous-time system is described by the transfer function given below

$$H(s) = \frac{Y(s)}{X(s)} = \frac{-5s^2 + 2}{s^2 - s + 3},$$

where x(t) is the input and y(t) is the output of the system. Compute the response, y(t), for all $t \ge 0$, when $y(0^-) = -2$, $\dot{y}(0^-) = 1$, and x(t) = r(t) = tu(t).


Problem 3:

Using the Block Diagram Reduction technique to derive the close-loop transfer function of $\frac{Y(s)}{U(s)}.$

<u>Problem 4</u>: Find the following transfer functions for the SFG shown below:

a)
$$\frac{Y_7}{Y_1}\Big|_{Y_8=0}$$
 and b) $\frac{Y_7}{Y_4}\Big|_{Y_1=0}$.

Problem 5:

A continuous-time signal

$$x(t) = e^{-2t} \sin 3tu(t)$$

has the Laplace transform X(s). Determine the inverse Laplace transform of V(s), v(t), where

$$V(s) = \frac{e^{-5s} + e^{5s}}{2} X(s).$$